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Abstract — Combination of multiple clusterings is an important task in the area of unsupervised learning.  
Inspired by the success of supervised bagging algorithms, we propose a resampling scheme for integration of 
multiple independent clusterings. Individual partitions in the ensemble are sequentially generated by clustering 
specially selected subsamples of the given data set. In this paper, we compare the efficacy of both subsampling 
(sampling without replacement) and bootstrap (with replacement) techniques in conjunction with several fusion 
algorithms. The empirical study shows that a meaningful consensus partition for an entire set of data points 
emerges from multiple clusterings of subsamples of small size. The purpose of this paper is to show that small 
subsamples generally suffice to represent the structure of the entire data set in the framework of clustering 
ensembles. Subsamples of small size can reduce computational cost and measurement complexity for many 
unsupervised data mining tasks with distributed sources of data. 
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1. Introduction 
 

One of the major challenges for current clustering algorithms is the robustness of the derived 
solutions. Both supervised and unsupervised learning can be significantly improved by 
utilization of multiple solutions [1], [2]. However, the problem of finding a combination of 
clustering results is fundamentally different from combining multiple classifications in a 
supervised framework [3]. In the absence of training data, clustering algorithms face a difficult 
problem, namely the correspondence between labels in different partitions. Recent research 
[2], [3] on the combination of clusterings has addressed this issue by formulating consensus 
functions that avoid an explicit solution to the correspondence problem. Clustering ensembles 
require a partition generation process.  

One of the main goals of clustering research is to design scalable and efficient algorithms 
for large datasets [4]. One solution to the scaling problem is the parallelization of clustering by 
sharing processing among different processors [5], [6]. Recent research in data mining has 
considered a fusion of the results from multiple sources of data or from data features obtained 
in a distributed environment [7]. Distributed data clustering deals with the combination of 
partitions from many data subsets (usually disjoint). The combined final clustering can be 
constructed centrally either by combining explicit cluster labels of data points or, implicitly, 
through the fusion of cluster prototypes (e.g. centroid-based). We analyze the first approach, 
namely, the clustering combination via consensus functions operating on multiple labelings of 
a given dataset’s different subsamples. This study seeks to answer the question of the optimal 
size and granularity of the component partitions. 

Several methods are known to create partitions for clustering ensembles. Taxonomy of 



solutions for the generative procedure as well as different consensus functions for clustering 
combination is shown in Figure 1. Many approaches proposed to generate different multiple 
clustering from a give data set; applying various clustering algorithms [2], using one algorithm 
with different built-in initialization and parameters [3], [8], projecting data onto different 
subspaces [3], [13], choosing different subset of features [3],  and selecting different subsets of 
data points [10], [14] are instances of these generative mechanism. Several consensus 
functions, Co-association-based methods [8], [12], Voting approach [9], [10], Information-
theoretic methods (e.g. Quadratic Mutual Information) [3], and mixture model [11] are 
developed to discover the final clustering solution from many multiple partitions. Details of 
the algorithms can be found in the listed references. 

 

 
Figure 1. Taxonomy of different approaches to clustering combination; right side: different approaches how to 
obtain the diversity in clustering; left side: different consensus function to find the clustering ensemble. 

 
 

2. Clustering ensemble algorithm 
 

The problem of clustering combination can be formalized as follows. Let D be a data set of 
N data points in d-dimensional space. The input data can be represented as an N × d pattern 
matrix or N × N dissimilarity matrix, potentially in a non-metric space. Suppose that X = 
{X1,…,XB} is a set of bootstrap samples or subsamples of input data D. A chosen clustering 
algorithm is run on each of the samples in X that results in B partitions P = {P1,…, PB}. Each 
component partition in P is a set of clusters Pi={ iC1 , iC2 ,…, i
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and k(i) is the number of clusters in the i-th partition. The problem of combining partitions is 
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to find a new partition σ ={C1,…,CM} of the entire data set D given the partitions in P, such 
that the objects in a cluster of σ are more similar to each other than to objects in different 
clusters of σ. In order to find this target partition, σ, one needs to design a consensus function 
utilizing information from the partitions in {P1,…, PB}. 

A consensus function maps a given set of partitions P = {P1, …, PB} to a target partition σ 
using similarity values. The similarity between two objects x and y is defined as follows: 
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Similarity between a pair of objects simply counts the number of clusters shared by these 

objects in the partitions {P1,…, PB}. We have chosen the k-means algorithm as the partition 
generation mechanism, mostly for its low computational complexity.  

 
 

Input:  
D – the input data set N d-dimensional data, 
B - number of partitions to be combined 
M – number of clusters in the final partition σ, 
k – number of clusters in the components of the combination,  
Γ - a similarity-based clustering algorithm  
for  j=1 to B 

  Draw a random pseudosample Xj 
     Cluster the sample Xj: P(i)←k-means({Xj}) 
     Update similarity values (co-association matrix) for all patterns in Xj 
end 
Combine partitions via chosen  Γ: σ ←Γ (P)  
Validate final partition σ (optional) 
return σ   // consensus partition 
 

Figure 2. The algorithms for clustering ensemble, based on co-association matrix and using different similarity-based 
consensus functions 

 
Under the assumption that diversity comes from resampling, two families of algorithms can 

be proposed for integrating clustering components. The first family is based on the co-
association matrix, which employs a group of hierarchical clustering algorithms to find the 
final target partition. The pseudocode of these algorithms is shown in Figure 2. In the 
algorithms of this type, similarity-based clustering algorithms are used as the consensus 
function, Γ. Hierarchical clustering consensus functions with single-link (SL), complete-link 
(CL), and average-link (AL) criteria were used to obtain a target consensus clustering, σ.  The 
second family of algorithms deals with the consensus functions, which are not based on co-
association matrix. Details of the algorithms can be found in [8] and [9].  

In the case of the subsampling algorithm (without replacement), the right choice of sample 
size S is closely related to the value of k and the value of B and proper setting of S is required 
to reach convergence to the true structure of the data set. The algorithm parameters will be 
discussed in section 5. In the rest of this paper k stands for number of clusters in every 



partition, B for number of partitions/pseudosamples (in both the bootstrap and the subsampling 
algorithms), and S, for the sample size. 

 
3. Experimental results and discussion 

 

The experiments were performed on several data sets, including a challenging artificial 
problem, the “Halfrings” data set, two data sets from the UCI repository, “Iris” and “Wine,” 
and two other real world data sets, the “LON” [14] and “Star/Galaxy” data sets. A summary of 
data set characteristics is shown in Table 1. 

 

Table 1. A summary of data sets characteristics 

 No. of Classes No. of Features No. of Patterns Patterns per class 

Halfrings 2 2 400 100-300 
Star/Galaxy 2 14 4192 2082-2110 

Wine 3 13 178 59-71-48 
LON 2 6 227 64-163 
Iris 3 4 150 50-50-50 

 
For all data sets the number of clusters, and their label assignments, are known. Therefore, one 
can use the misassignment (error) rate of the final combined partition as a measure of 
performance of clustering combination quality.  One can determine the error rate after solving 
the correspondence problem between the labels of derived and known clusters. The Hungarian 
method for minimal weight bipartite matching problem can efficiently solve the 
correspondence problem with. O(k3) complexity for k clusters. Consensus clustering was 
obtained by eight different consensus functions: hypergraph-based MCLA, HPGA and CSPA 
algorithms [2], quadratic mutual information (QMI) [3], and different co-association-based 
consensus functions including single-link (SL), average-link (AL), and complete-link (CL).  
 
3.1. Algorithm’s parameters 

 
The accuracy of consensus partition is a function of the resolution of partitions (value of k) 

and the number of partitions, B, to be merged. We studied the dependence of overall 
performance on the number of clusters, k. In particular, clustering on the subsamples and 
bootstrap samples was performed for the values of B in the range [5, 1000] and the values of k 
in the interval [2, 20]. Analogously, the size of the pseudosample, S in subsampling 
experiments, is another important parameter. The experiments were performed with different 
subsample sizes in the interval [N/20, 3N/4], where N is the size of original data sample. Thus, 
in the case of the “Halfrings”, S was taken in the range [20, 300] where the original sample 
size is N=400 while in the case of the “Galaxy” data set, S was varied in the range [200, 3000] 
where N=4192. Therefore, in resampling without replacement, we analyzed how the clustering 
accuracy was influenced by three parameters: number of clusters, k, in every clustering, 
number of drawn samples, B, and the sample size, S. It is worthwhile to note that all the 
experiments were repeated 20 times and the average error rate for 20 independent runs is 
reported, except for the "Star/Galaxy" set, where 10 runs were performed. 
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Figure 3. “Halfrings” data set. Experiments using subsampling with k=10 and B=100, different consensus 
functions and sample sizes. 
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Figure 4. “Star/Galaxy” data set. Experiments using subsampling, with k = 4 and B = 50 and different consensus 
functions and sample sizes. 
 

Note that in both the bootstrap and the subsampling algorithms all of the samples are drawn 
independently, and thus the resampling process could be performed in parallel. Therefore, 
using the B-parallel process, the computational process becomes B times faster.  

 
Table 2. Summary of the best results of Bootstrap methods  

Data set Best Consensus function(s) Lowest Error 
rate obtained Parameters 

Halfrings Co-association, SL 
Co-association, AL 

0% 
0% 

k ≥  10, B. ≥ 100 
k ≥  15, B ≥  100 

Iris Hypergraph-HGPA 2.7% k ≥  10, B ≥  20 
Hypergraph-CSPA 26.8% k ≥  10, B ≥  20 

Wine 
Co-association, AL 27.9% k ≥  4, B ≥  100 

LON Co-association, CL 21.1% k ≥  4,  B ≥ 100 

Galaxy/ Star 
Hypergraph-MCLA 
Co-association, AL 
Mutual Information 

9.5% 
10% 
11% 

k ≥  20, B ≥  10 
k ≥  10, B ≥  100 

k ≥  3, B ≥  20 



Table 3.  Subsampling methods: trade-off among the values of k, the number of partitions B, and the sample size, 
S. Last column denote the percentage of sample size regarding the entire data set.  (Bold represents most optimal)  

 
Data set Best Consensus 

function(s) Lowest Error rate K B S % of entire data 

SL 0% 10 100 200 50% 
SL 0% 10 500 80 20% 
AL 0% 15 1000 80 20% 

Halfrings 

AL 0% 20 500 100 25% 
HGPA 2.3% 10 100 50 33% Iris 
HGPA 2.1% 15 50 50 33% 

AL 27.5% 4 50 100 56% 
HPGA 28% 4 50 20 11% Wine 
CSPA 27.5% 10 20 50 28% 

CL 21.5% 4 500 100 44% LON 
CSPA 21.3% 4 100 100 44% 
MCLA 10.5% 10 50 1500 36% 
MCLA 11.7% 10 100 200 5% Galaxy/ Star 

AL 11% 10 100 500 12% 
 
In subsampling, the smaller the S-value, the lower the complexity of the k-means clustering; 

therefore, the result is a much smaller complexity in the co-association based consensus 
functions, which are super-linear, N.  

 
3.2. Subsampling vs. Bootstrapping 

 

Comparing the results of the bootstrap and the subsampling methods shows that when the 
bootstrap technique converges to an optimal solution, that optimal result could be obtained by 
the subsampling as well, but with data points of a critical size. For example, in the “Halfrings” 
data set the perfect clustering can be obtained using a single-link consensus function with 
k=10, B=100 and S=200 (1/2 total set size) as shown in Figure 3 (compare to the bootstrap 
results in Table 2) while perfect results can be achieved with k=15, B = 50, and S = 80 (1/5 
total set size). Thus, there is a trade off between the number of partitions, B, and the sample 
size, S. This comparison shows that the subsampling method can be much faster than the 
bootstrap (N=400) relative to computational complexity. The results of subsampling for the 
“Star/Galaxy” data set in Figure 4 show that in resolution k=3 and number of partitions 
B=100, with only sample size S = 500 (1/8 total set size), one can reach 89% accuracy – the 
same results required the entire data set in the bootstrap method. This implies that in a large 
data set, a small fraction of data can be representative of the entire data set, a result that holds 
great computational promise for distributed data mining. 

The optimal sample size, S, and granularity of the component partitions derived by 
subsampling are reported in Table 3. We see that the accuracy of the resampling method is 
very similar to that of the bootstrap algorithm, as reported in Table 2. This equivalent level of 
accuracy was reached with remarkably smaller sample sizes and much lower computational 
complexity! The trade-off between the accuracy of the overall clustering combination and 
computational effort for generating component partitions is shown in Table 3, where we 
compare accuracy of consensus partitions. The most promising result is that only a small 
fraction of data (i.e., 12% or 5% for the “Star/Galaxy” data set) is required to obtain the 
optimal solution of clustering, both in terms of accuracy and computational time. 



 

4. Conclusion 
 

This study shows that meaningful consensus partitions for the entire data set of objects 
emerge from clusterings of bootstrap and subsamples of small size. The results demonstrate 
that there is a trade-off between the number of clusters per component and the number of 
partitions, and that the sample size of each partition needed in order to perform the 
combination process converges to an optimal value with respect to error rate. The bootstrap 
technique employed herein was recently applied in [9], [10], [12], and [14] with similar results 
and aims – namely, to create diversity in clustering ensembles. However, our work extends 
that of previous research by using a more flexible subsampling algorithm for ensemble 
generation; subsamples of small size can reduce computational cost and measurement 
complexity for many explorative data mining tasks with distributed sources of data. We also 
provide a detailed comparative study of several consensus techniques. The challenging aspects 
of using resampling techniques for maintaining diversity of partitions are also discussed in this 
paper. We show that there exists a critical fraction of data such that the structure of an entire 
data set is perfectly detectable. Further study of alternative resampling methods, such as the 
balanced (stratified) and recentered bootstrap methods are critical in generalizing these results.  
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